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Semiclassical sum rules for matrix elements and response functions in chaotic
and in integrable quantum billiards

B. Mehlig
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, Great Britain

~Received 18 December 1997; revised manuscript received 12 August 1998!

It is shown that expectation values and transition matrix elements in classically chaotic quantum systems
may not fluctuate randomly, since features of the short-time classical dynamics significantly affect the fluc-
tuations. We analyze semiclassical sum rules constraining expectation values and transition matrix elements in
classically chaotic and integrable quantum systems. We show that these sum rules exhibit a wealth of inter-
esting structures~resonances and oscillatory contributions! as well as interesting properties, such as their
asymptotic decay. It is shown how these properties can be explained semiclassically, in terms of periodic and
quasiperiodic classical motion. In particular, we analyze how phase-space inhomogeneities in chaotic systems
give rise to localization of wave functions and hence to exceptionally large matrix elements. These are related
to resonances in classical autocorrelation functions. As an example, we consider a family of billiards in two
dimensions the classical dynamics of which ranges from integrable to chaotic.@S1063-651X~99!06201-7#

PACS number~s!: 05.45.Mt
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I. INTRODUCTION

Spectral properties of classically chaotic quantum syste
have received considerable attention over the last years,
it is now well established that spectral fluctuations in su
systems on small energy scales are universal. Furthermo
has been shown that spectral correlations on larger en
scales can be qualitatively and quantitatively underst
from a semiclassical point of view@1,2#. It is clearly highly
desirable to reach a similarly thorough understanding of
statistical properties of expectation values and transition
trix elements since they describe the influence of tim
independent and time-dependent perturbations and
many experimental situations.

In weakly disordered quantum systems, the fluctuation
diagonal and nondiagonal matrix elements are Gaussian
described by random matrix theory@3,4#. While the average
of nondiagonal matrix elements vanishes in the semiclass
regime, diagonal matrix elements are not necessarily dis
uted around zero. A semiclassical estimate for the mea
given by the phase-space average of the observable in q
tion. The variances of diagonal and nondiagonal matrix e
ments are related@5#, and hence fluctuations of expectatio
values and transition matrix elements in such systems
exhaustively characterized by the mean and the varianc
the distribution of diagonal matrix elements.

One might expect that this would equally apply to diag
nal and nondiagonal matrix elements in classically cha
quantum systems. It has indeed been shown that fluctua
of expectation values in systems with exponentially decay
classical correlations are described by random matrix the
@6#. Recently, fluctuations of expectation values in chao
systems have attracted considerable attention@5–14#.

In many chaotic systems, however, and this includes m
of the experimentally accessible systems, classical dynam
exhibits structures on small time scales, leading to nonex
nential decay of correlations. In this case random ma
theory does not apply and fluctuations of diagonal and n
PRE 591063-651X/99/59~1!/390~19!/$15.00
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diagonal quantum-mechanical matrix elements can di
substantially from the predictions of random matrix theo
Consider, for example, Fig. 1~a!, which shows the histogram
of nearest-neighbor level spacings for a chaotic~and largely
ergodic! quantum billiard. The distribution is well approxi
mated by Wigner’s surmise, the prediction of random mat
theory. Figure 1~b!, on the other hand, shows a histogram
expectation values of the dipole operator in the same sys
The distribution is far from Gaussian.

In this paper we analyze fluctuations of diagonal and n
diagonal matrix elements in a family of quantum billiard
exhibiting integrable and chaotic classical dynamics. W
show how structures in the classical short-time dynamics
fluence quantum-mechanical matrix elements. We ana
semiclassical sum rules constraining the fluctuations of d
onal and non-diagonal matrix elements@5,15–17# and ex-
plain in detail how phase-space structures influence ma
elements in integrable and chaotic quantum systems.

FIG. 1. ~a! Histogram of the nearest-neighbor level spacin
for a chaotic quantum billiard. Wigner’s surmiseP(D)
5Dp/2 exp(2pD2/4) is also shown~dashed line!. ~b! The histo-
gram of expectation values of the operatorr2 in the same system
shows strong non-Gaussian behavior.
390 ©1999 The American Physical Society
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The lowest order classical contributions to the sum ru
in chaotic systems have previously been considered: Au
and Wilkinson@18,19# have studied the quartic oscillator an
a hyperbolic billiard. Prosen and Robnik have perform
quantum calculations for a range of chaotic billiards@20,21#.
Boosé et al. have studied the hydrogen atom in a stro
magnetic field@22#.

The leading order semiclassical contributions to sum ru
for matrix elements in integrable and chaotic systems w
analyzed in@23,24#. In the present article, the calculation
reported in@23,24# will be discussed in detail. In addition
the corresponding sum rules for diagonal and nondiago
matrix elements in integrable systems will be derived.

As has been outlined above, a classical and semiclas
analysis of diagonal and nondiagonal matrix elements is
teresting from a theoretical point of view in its own righ
However, a semiclassical theory of matrix elements is als
interest in view of recent experiments on clean GaxAl12xAs
heterostructures. In many respects, these systems behav
sentially classically. In order to explain various features
quantum magnetoconductivity in an array of antidots,
instance, purely classical models~incorporating the essentia
structure of classical phase space! are sufficient@25#. We
derive the relevant classical approximations to quantum
sponse functions and compare them in detail with fu
quantum-mechanical calculations. Apart from providing
quantitative theory for the magnetoconductivity in antid
arrays — as discussed in Refs.@25,26# — these results can
be applied to describe the absorption of radiation and
polarizability of small conducting particles in the ballist
@27,28# but also in the diffusive regime@29#.

In some cases it may be necessary to complement
theory based on purely classical phase space informatio
a semiclassical calculation. More refined measurement
the magnetoconductivity@30# have shown characteristic os
cillations. They are thought to arise semiclassically from
riodic orbit contributions of the type discussed in the pres
article @31,32#. A comparison of such semiclassical contrib
tions with accurate quantum calculations was first publis
in @24# and @23#. In the present paper we give a detail
account of these calculations and discuss the relevance t
above-mentioned experiments.

Finally, a semiclassical theory for diagonal matrix e
ments may be used to calculate the thermodynamic resp
of a system of noninteracting particles~such as electrons in
ballistic cavity! to static external perturbations.

The present article is organized as follows. In Sec. II
briefly describe the system used for the quantum-mechan
calculations, a parametric family of quantum billiard
s
tin
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@33,34,20,35#. In Sec. III we outline the semiclassical theo
used in the present paper. Section IV describes the result
densities of diagonal matrix elements, in integrable as w
as in chaotic systems. In Sec. V we discuss densities of n
diagonal matrix elements. In Sec. VI we discuss the respo
of quantum billiards to external perturbations, using the
sults of Secs. III–V. Finally, in Sec. VII we summarize an
draw conclusions.

II. ROBNIK’S BILLIARD

In this section we briefly describe the system used in
following to illustrate our results. It is a family of two
dimensional quantum billiards, first studied by Robn
@33,34#, Prosen and Robnik@20#, and Prosen@21,35# and
others. A review of the classical and quantum properties
this system can be found in Refs.@33,34#. In the following
we restrict ourselves to introducing those features of the s
tem necessary to make the ensuing discussion in S
IV–VI intelligible.

The boundary of Robnik’s billiard is parametrized byr
511acosf in polar coordinates (r ,f). For a50, the
boundary is just a circle. Motion in the circular billiard i
regular. As the domain is deformed, classical motion cea
to be integrable and soft chaos according to the KA
Lazutkin theorem develops. The last large islands of stab
disappear just beforea51/2. Fora51, the system has bee
proven to be ergodic. In the following sections, we discu
two cases, the integrable limit (a50) and the largely ergodic
case (a51/2). We take the massm51/2.

The integrable limit.For a50, classical motion in phase
space is integrable. A possible choice of action variables
been given in@36#: since angular momentumLz5ḟr 2 is
conserved, one may take

I 15ḟ r 25r minAE , ~1!

wherer min is the minimal value of the radius at the turnin
point of the radial motion. The second action variable
taken to be

I 25
1

pEr min

1

drAE2
I 1

2

r 2
. ~2!

The corresponding angle variables are
u155 f2arccosS r min

r D1
v1

2AE
Ar 22r min

2 , for 0,t,
T2

2
,

f1arccosS r min

r D2
v1

2AE
Ar 22r min

2 , for
T2

2
,t,T2 ,

~3!

u25v2 t , ~4!
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392 PRE 59B. MEHLIG
wheret is the time along the trajectory,v5(v1 ,v2) are the
angular and radial frequencies andT1 andT2 are the corre-
sponding periods.

The largely ergodic case.For a51/2, motion is largely
ergodic and all large islands of stability have disappear
While it has been shown in Ref.@37# that isolated stable
orbits persist ata51/2 and beyond, it is safe to ignore the
small islands for our purposes and we will assume that
relevant periodic orbits of the system are isolated. Tab
summarizes the properties of the shortest unstable peri
orbits of the billiard ata51/2. See also Fig. 2. The orbits a
labeled by the number of hits at the boundary. The fami
of whispering gallery orbits, which originate from tori wit
winding number 1/n (2/n) are denoted byn andn1 (n2 and
n3). The asymmetric six-hit orbit, which bifurcates from 62

at a'0.44, is denoted by 62a. Since the length of both orbit
is still very close ata51/2, their contribution to the Fourie
transform of the quantum spectra cannot be resolved.

III. SEMICLASSICAL THEORY FOR MATRIX ELEMENTS

In this section we discuss the semiclassical theory for
cal averages of matrix elements of the form

dA~E!5(
a

^cauÂuca& d~E2Ea! , ~5!

C~E,\v!5(
ab

u^cauÂucb&u2 d~\v1Ea2Eb! d~E2Ea! .

~6!

HereEa and uca& are the eigenvalues and eigenstates of
HamiltonianĤ. Semiclassical approximations for these loc

TABLE I. Properties of the shortest unstable periodic orbits
a51/2 and positive parityp1. Lp denotes the length,lp the
Lyapunov exponent, mp the Maslov exponent, wpr

5Lp /Audet(M p
r 21)u the semiclassical amplitude andxp the aver-

age of the observableA5x around the periodic orbitp.

PO Lp/2p lp mp type
wpr/2p

3exp(2ipmp/2) xp

21 (r 5
1
2 ) 0.3504 0.6165 3 ih 2 i0.1672 0.433

0.7009 6 h 20.2670
2,p1 0.6366 1.5907 5 ih i0.2998 0.500

1.2732 10 h 20.1299
3 0.8601 2.2364 8 ih 0.2540 0.463
31 0.8924 1.7220 9 h i0.4594 0.467

1.7848 18 h 2 0.1648
4 0.9479 2.6561 11 ih 2 i0.2347 0.463
41 0.9649 2.0947 12 h 0.3861 0.471
84 (r 5

1
2 ) 1.2899 2.8308 11 h 2 i0.3303 0.495

85 (r 5
1
2 ) 1.3052 1.9470 12 ih 0.4315 0.493

52 1.6003 3.5563 14 ih 20.2629 0.462
53 1.6251 2.8679 15 h 2 i0.4107 0.463
62a 1.7330 2.9845 17 ih i0.3710 0.467
62 1.7343 2.4970 18 h 20.5423 0.469
72 1.8497 4.4276 20 ih 0.1998 0.467
73 1.8640 3.7346 21 h i0.2951 0.469
d.

e
I
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-

e
l

densities provide sum rules for matrix elements constrain
their fluctuation properties. The semiclassical evaluation
Eqs. ~5! and ~6! closely follows Gutzwiller’s semiclassica
approximation for the density of states,

d~E!5(
a

d~E2Ea! . ~7!

Semiclassically,d(E) is obtained as a sum of two terms,

d~E!5^d~E!&1d̃~E! . ~8!

Here ^d(E)& is the so-called Weyl contribution. It is a
smooth function of the energyE and asymptoticallŷd(E)&
is energy independent for two-dimensional quantum b
liards. The second termd̃(E) is an oscillatory contribution to
the density of states that can be expressed as a sum
periodic orbits.

Similarly, the energy dependence of the densities~5! and
~6! can be split into smooth and oscillatory parts. The smo
part is again related to zero-length orbits, and the oscillat
contributions can be expressed as sums of periodic orbits
the following we treat classically chaotic as well as int

r

FIG. 2. Isolated periodic orbits for Robnik’s billiard with
a51/2, as listed in Table I.
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grable systems. Section III A deals with the chaotic ca
while Sec. III B deals with the integrable case.

A. Classically chaotic systems

In this section we derive semiclassical approximations
the local densities defined in Eqs.~5! and ~6! for chaotic
systems. The results derived in this section are originally
to Wilkinson@16,5#. In Ref.@17#, Wilkinson’s derivation was
reformulated for the case of diagonal matrix elements us
Wigner transforms. Along similar lines, a semiclassical e
pression for Eq.~6! may be obtained, as will be seen in th
following. It is convenient to rewrite Eqs.~5! and ~6! as
follows:

dA~E!5Tr @Â d~E2Ĥ !#, ~9!

C~E,\v!5
1

2p\ E dt exp~ ivt ! Tr @Ât Â d~E2Ĥ !#,

~10!

whereÂt5exp(2iĤt/\) Âexp(iĤt/\). Thed functions are ex-
pressed in terms of retarded and advanced Green’s funct

d~E2Ĥ !52
1

2p i
@Ĝ1~E!2Ĝ2~E!# . ~11!

The next step is to rewrite the traces in Eqs.~9! and ~10! as
phase space integrals, e.g.,

Tr @Ât Â Ĝ6~E!#5E dp dr

~2p\!d
GW

6~p,r;E! ~AtA!W~p,r!,

~12!

where GW
6(p,r;E) is the Wigner transform of the Green

function G6(r8,r;E)

GW
6~p,r;E!5E dr1 G6~r1r1/2,r2r1/2;E! expS 2

i

\
p•rD

~13!

and (AtA)W(p,r) is the Wigner transform ofÂtÂ. To lowest
order in\ one has

~AtA!W~p,r!5A~pt ,rt!A~p,r!

1
\

2i
$A~pt ,rt!,A~p,r!%1O~\2!, ~14!

where$,% is the Poisson bracket. In the following only th
lowest-order contributions in\ to ^C(E,\v)& andC̃(E,\v)
will be considered. A semiclassical approximation
GW

6(p,r;E) is obtained by expressing the Green’s function
terms of the propagator,

G1~r9,r8;E!5
1

i\ E
0

`

dt K~r9,r8;t !expS i

\
EtD . ~15!

For K we substitute the Van Vleck propagator,
e

r

e

g
-

ns,

K~r9,r8;t !5S 1

2p i\ D d/2

(
classical

paths

UdetS 2
]2R

]r9]r8
D U1/2

3expF i

\
R~r9,r8;t !2 i

p

2
kG , ~16!

whereR(r9,r8;t) is the action integral. It will be seen in th
following that the two contributions toC(E,\v), namely the
smooth part̂ C(E,\v)& and the oscillatory partC̃(E,\v)
are obtained by two different approximations to the V
Vleck propagator, the short-time approximation and t
stationary-phase approximation for the time integral.

1. Short-time approximation

The short-time approximation toK(r9,r8;t) yields the
smooth contributions to C(E,\v). For short times,
R(r9,r8;t).m(r92r8)/4t2tV(r91r8)/2. Substituting this
into Eq.~13! and performing the integral overr1 in stationary
phase approximation, one obtains

GW
1~p,r;E!5

1

E2H~p,r!1 i01
. ~17!

Using Eqs.~10! and ~12! one finds ind52 dimensions

^C~E,\v!&.
1

2p\E2`

`

dt exp~ ivt ! E dp dr

~2p\!2

3d@E2H~p,r!# A~pt ,rt! A~p,r!

[
1

2p\E2`

`

dt exp~ ivt ! ^A~pt ,rt! A~p,r!& ,

~18!

where^ & denotes an average over the energy shell. Equa
~18! gives the leading order classical contribution to t
smooth part ofC(E,\v). For an ergodic system, the phas
space average can be expressed in terms of a classical
correlation function along an ergodic trajectory

^A~pt ,rt! A~p,r!&5^d~E!& Ccl~E,t !, ~19!

whereCcl(E,t) is given by

Ccl~E,t !5 lim
T→`

1

TE0

T

dt8 A~pt1t8 ,rt1t8! A~pt8 ,rt8! .

~20!

The analogous expression for the density~5! is

^dA~E!&.E dp dr

~2p\!2
d@E2H~p,r!# A~p,r!

[^d~E!& ^A~p,r!&mc ~21!

as derived in Refs.@16# and @17#. The second equality de
fines the microcanonical phase-space average ofA. It should
be emphasized that Eqs.~18! and~21! give only the leading
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order contribution to the smooth parts of the densities~5! and
~6!. Higher corrections to Eq.~21! are considered in Sec
IV A .

2. Oscillatory contributions

In order to calculate the oscillatory contributions to Eq
~5! and ~6!, the integral in Eq.~15! is performed in the sta
tionary phase approximation, using the Van Vleck propa
tor. This calculation is outlined in the present section. It w
be assumed that all periodic orbits of the classical system
isolated. Hence the following derivation is inadequate in
case of classically integrable systems, where motion on
is degenerate. These systems will be dealt with separate

It is well known that approximating the time integral
Eq. ~15! within the stationary-phase approximation yields
expression for the semiclassical Green’s function. Inser
this into the expression for the Wigner transform of t
Green’s function gives

GW
1~p,r;E!5

1

i\S 1

2p i\ D ~d21!/2

3 (
classical

paths

E dr1uD~r2r1/2,r1r1/2;E!u1/2

3expF i

\
S~r2r1/2,r1r1/2;E!2 i

p

2
m

1
i

\
p–jG . ~22!

Using Eqs.~10! and~12! one obtains for the contribution o
a given classical path fromr1r1/2 to r2r1/2 @compare Fig.
3~a!#

1

i\S 1

2p i\ D ~d21!/2E dr1E dpdr

~2p\!d
A~pt ,rt! A~p,r!

3uD~r2r1/2,r1r1/2;E!u1/2

3expF i

\
S~r2r1/2,r1r1/2;E!2 i

p

2
m1

i

\
pr1G .

~23!

FIG. 3. Illustrating the contributions to Eqs.~23!, ~24!, and~25!.
~a! shows a path fromr8 to r9, with intial momentump8 and final
momentump9. ~b! shows a closed path returning tor8, with differ-
ent initial and final momentap8 and p9, with p5(p81p9)/2. ~c!
shows a periodic orbit withp5p85p9.
.

-
l
re
e
ri
.

g

The integrals overp und r1 are calculated within the station
ary phase approximation. The conditions of stationary ph
in Eq. ~23! are r150 and2(p91p8)/21p50. Hence only
closed classical orbits contribute in this approximation. Fo
given closed classical path@compare Fig. 3~b!# one obtains a
contribution of the form

1

i\S 1

2p i\ D ~d21!/2E drA~pt ,rt! A~p,r!

3uD~r,r;E!u1/2expF i

\
S~r,r;E!2 i

p

2
m G . ~24!

The final integral overr can again be evaluated in
stationary-phase approximation, which ensures that only
riodic orbits contribute@compare Fig. 3~c!# The calculation is
identical to the original one of Gutzwiller and we only quo
the final result for the oscillatory part ofC(E,\v),

C̃~E,\v!5
1

p\(
p,r

Cp~E,\v! wpr Tp

3cosS 1

\
rSp~E!2

p

2
rmpD , ~25!

where the sum is over periodic orbitsp and their repetitions
r ,Tp are the periods of the periodic orbits andSp(E) the
respective actions. The semiclassical weightswpr are given
by wpr51/Audet(M p

r 21)u, where M p
r are the monodromy

matrices. Finally,Cp(E,\v) are Fourier transforms of cor
relation functions along periodic orbits

Cp~E,\v!5
1

2p\E2`

`

dt exp~ ivt ! Cp~E,t !

5
1

2p\E2`

`

dt exp~ ivt !
1

Tp

3E
0

Tp
dt8 A~pt1t8 ,rt1t8! A~pt8 ,rt8! .

~26!

Since the autocorrelation functions are periodic functions
time with periodTp , they can be expressed as a Fourier s
Cp(E,t)5(napn(E) exp(ivpnt) with vpn52pnTp

21 . This
yields

Cp~E,\v!5(
n

apn~E! d~\v2\vpn! . ~27!

Finally, we quote the oscillatory contribution to Eq.~5! ~see
@5# and @17#!,

dA~E!5^dA~E!&1d̃A~E!,

d̃A~E!5Re
1

p\(
pr

Ap wpr Tp
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3expS i

\
rSp~E!2 ir

p

2
mpD ,

~28!

whereAp5Tp
21*0

Tpdt A(pt ,rt) is the average of the observ
able along the periodic orbitp. This completes the discussio
of chaotic systems. In the next section we turn to classic
integrable systems.

B. Classically integrable systems

In this section we derive semiclassical approximations
the local densities defined in Eqs.~5! and ~6! for classically
integrable systems.

1. Semiclassical theory for diagonal matrix elements

We consider the quantum-mechanical density of state

dA~E!5(
mn

^cmnuÂucmn&d~E2Emn! ~29!

for integrable systems. HereEmn anducmn& are the eigenval-
ues and eigenfunctions of the circular quantum billiard. Th
are labeled in terms of their radial and azimuthal quant
numbersm andn. In terms of the actionsI , the quantization
conditions are@36#

I 15 R df pf52p n\ , I 25 R dr pr52p ~m13/4!\ .

~30!

With Eq. ~30! the density~29! may be written as

dA~E!5(
I

^c IuÂuc I&d†E2H~ I !‡, ~31!

whereuc I& are the wave functions associated with the qu
tizing tori I . Within the Wigner-Weyl formalism, the matrix
elementŝ c IuÂuc I& may be expressed as phase-space i
grals of the classical observableA(p,q) times the Wigner
function of the corresponding eigenstatec I&. In action-angle
variables, the latter is given by@38# d(I2I 8), and hence

^c IuÂuc I&5E du

~2p!2
A~ I ,u![A~ I !. ~32!

Following Ref. @39#, the sum overI is rewritten as an inte-
gration, using the Poisson summation formula

dA~E!5
2

\2(M expS i
p

2
MaD

3E dIA~ I !d@E2H~ I !#exp~2p iMI /\!. ~33!

Here, the actions are integrated overI 1 ,I 2.0 and M
5(M1 ,M2) are vectors on the lattice reciprocal to the EB
lattice (m,n). For a discussion of the phasesa see@39#. The
first term in Eq.~33!, M50, is just the phase-space avera
of A(I ,u)
ly

r

y

-

e-

^dB~E!&5E dIdu

~2p\!2
A~ I ,u! d@E2H~ I !#, ~34!

in analogy with Weyl’s rule for the density of state@see Eq.
~21!#. For MÞ0, the integral overI is performed in a sta-
tionary phase approximation@39,40# and one obtains

d̃A~E!5\23/2Re(
M.0

AM wM

3expS i

\
SM~E!1 i

p

2
mMD , ~35!

where

AM5E du

~2p!2
A~ IM ,u!. ~36!

The summation in Eq.~35! is over all rational tori with ac-
tions IM . The vectorM5(M1 ,M2) characterizes their topol
ogy, SM(E) and LM are the Maupertuis actions and th
lengths of the orbits on the toriM. In the case of the circula
billiard, one has LM52M2sin(pM1 /M2), SM(E)
5A2mELM , wM5(8p)21/2gMLM

3/2M2
22E21/4, and the

phasesmM are given bymM51/223M2. The factorgM ac-
counts for the twofold degeneracy of tori with finite angul
momentum6pf which give identical contributions to Eq
~21!. Motion along self-retracing orbits on tori with vanish
ing angular momentum ~where M5r (1,2) with r
51,2,. . . ) hasgM51, accordingly.

Equations~35! and ~36! provide a semiclassical estima
for the density~5! for integrable systems. In the next sectio
we briefly discuss the case of nondiagonal matrix eleme
~6!.

2. Semiclassical theory for nondiagonal matrix elements

In the present section we give a semiclassical estimate
the density~6! for classically integrable systems. The desir
result follows immediately from Eqs.~35! and ~36! by re-
placing A(p,r) by A(pt ,rt)A(p,r), in the same way as Eq
~6! is obtained from Eq.~5! by replacing ^cauÂuca& by

^cauÂtÂuca&5(bu^cauÂucb&u2 exp@i(Ea2Eb)t/\#. One ob-
tains

C~E,\v!5^C~E,\v!&1C̃~E,\v! ~37!

with

^C~E,\v!&.
1

2p\E dt expS i

\
vt D

3E dIdu

~2p\!2
A~ I ,u1vt ! A~ I ,u! d@E2H~ I !#

~38!
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C̃~E,\v!5\23/2(
M.0

CM~E,\v! wM

3cosS SM~E!1 i
p

2
mMD , ~39!

where

CM~E,\v!5E dt

2p\
expS i

\
vt D

3E du

~2p!2
A~ IM ,u1vMt ! A~ IM ,u! .

~40!

The phase-space observables are periodic functions o
angle variablesu and can be expanded as follows:

A~ IM ,u!5(
n

An~ I ! exp~ i n–u! . ~41!

This gives, usingvn(I )5n•v(I ),

^C~E,\v!&.(
n
E dI uAn~ I !u2 d@\v2\vn~ I !#

3d@E2H~ I !# ~42!

and

CM~E,\v!5(
n

uAn~ IM!u2 d@\v2\vn~ IM!# . ~43!

This completes the semiclassical analysis of Eqs.~5! and~6!,
for integrable as well as for chaotic, ergodic systems. In
following sections we compare the semiclassical theory w
results of quantum-mechanical calculations.

IV. RESULTS FOR DIAGONAL MATRIX ELEMENTS

In the present section we discuss the sum rules~28! and
Eqs.~34!,~35! for diagonal matrix elements and compare n
merical results for the system introduced in Sec. II with t
theory of Sec. III. We will first discuss the smooth contrib
tions ~which are insensitive to the nature of the classi
dynamics! and then the oscillatory contributions separat
for chaotic and integrable systems. We choose units in wh
m51/2 and\51.

A. The Weyl part

According to Eqs.~28! and~34! Weyl’s rule approximates
the mean density of matrix elements, just as the smooth
of the density of statesd(E)5(ad(E2Ea) is asymptoti-
cally given by@2#

^d~E!&5
A

4p
2

L

8p

1

AE
. ~44!

HereA is the area of the billiard andL is its circumference.
The first term corresponds to Weyl’s rule. The second term
he

e
h

-
e

l

h

rt

is

a perimeter correction. In the presence of diagonal ma
elements, the perimeter term is given by the average ofA(r)
along the boundary,̂A&bdy,

^dA~E!&5^A&mc

A

4p
2^A&bdy

L

8p

1

AE
. ~45!

For observables of the formA(r) this can be shown using th
method of images@41#. In the presence of symmetries, E
~44! is further modified and holds separately for each sy
metry class@2#. The symmetry reduced version of Eq.~45! is
obtained analogously and the perimeter terms are denote
^A&bdy

6 for positive and negativey parity. We have verified
Eq. ~45! by calculating the first 1250 eigenvalues of positi
parity and the corresponding diagonal matrix eleme

^cauÂuca& as a function of the deformation parametera. We
have takenA5x. In scaled variables, Eqs.~44! and~45! are
replaced by

^d~z!&5
A

2p
z2

L

4p
, ~46!

^dA~z!&5^A&mc

A

2p
z2^A&bdy

L

4p
~47!

~see Appendix A!. For the dipole operator,A5x, the micro-
canonical average is easily verified to be^x&mc5a(2
1a2/2)/(21a2). The elliptic integrals arising in the averag
of A(r) along the boundary have to be evaluated num
cally. Figure 4 shows the numerical coefficients of a polyn
mial fit to the mean densitieŝd(z)& and^dA(z)& as a func-
tion of a. Also shown are the analytical values given abo
The close agreement shows that the mean part of^dA(z)&
can be determined accurately, which is important for
analysis of the fluctuating part. We note that both^x&mc as
well as ^x&L tend to zero fora→0 for symmetry reasons.

FIG. 4. Coefficients of a polynomial fit of^d(z)& and^dA(z)& as
a function of the deformation parametera. ~a! shows the density of
states^d(z)&;a1z1a0. ~b! shows^dA(z)&;b1z1b0. Shown are
the analytical estimates~solid lines! as well as results of numerica
calculations (d), as described in the text.
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B. Periodic-orbit contributions

It has been shown in Sec. III how oscillatory contributio
to Eq. ~5! arise semiclassically as sums over periodic orb
In this section we discuss these contributions for the cla
cally chaotic and integrable cases. In what follows we alw
work with scaled variables, as defined in Appendix A.

1. Chaotic case

For a scaling system, Eq.~28! is conveniently rewritten as
follows. We define

dA~z!5(
a

^cauÂuca& d~z2za! , ~48!

whereza5AEa. According to Appendix A,

d̃A~z!5
1

p
Re(

p,r
wprApLpexp@r ~ izLp2 ipmp/2!#,

~49!

whereAp5Lp
21*0

LpdsA(ps ,rs) is the average of the observ
ableA(p,r) around the periodic orbitp. In order to analyze
the periodic-orbit contributions todA(z), we subtract the
Weyl part and Fourier transform the fluctuating part w
respect toz. In scaled variables, the periodic orbit contrib
tions ~49! appear as a Fourier series inz, the periodic orbits
stand out as peaks located at their respective lengthsLp ,
their amplitudes are given byAp wpr . In the following we
take A5x, such that the amplitudesAp are z independent.
Figure 5 shows the Fourier transform of the oscillating p
of dA(z) for Â5x. It is well described by the semiclassic
approximation ~vertical bars!, provided the difference in
length of the orbits is large compared to the quantal res
tion. There are cases where this condition is not met. O
example is the unstable horizontal orbit 2 with lengthL/2p
50.6366. It cannot be resolved from the stable orbit 42 bi-
furcated from 2 ata5A221. The latter has the lengt
L/2p50.6406 ata51/2. The same is the case for the pair
six-hit orbits 62 and 62a, whose length are almost degenera
at a51/2. Another example is the infinite family of whispe
ing gallery orbits originating from resonant tori with windin

FIG. 5. Modulus squared of the Fourier transform ofd̃A(z)
~with A5x) in comparison with its semiclassical approximatio
~49! for a51/2 andp1. ~a! shows the semiclassical approximatio
The perimeter of the billiard — where the lengths of the whisper
gallery orbits accumulate — is marked bỳ. ~b! shows the quan-
tum spectrum.
.
i-
s

t

-
e

f

number 1/n. Although the shortest orbits (n53,4,5) may
still be resolved, their actions converge to the circumfere
of the billiard as 1/n2 (n→`) and are no longer resolvable
In Fig. 5, the circumference is indicated by the symbol`.
Note that the quantum Fourier amplitudes decay to zero
the circumference is approached~at L/2p51.063 544 ata
51/2). The reason is that at finitez, the wave functions
cannot be localized arbitrarily close to the boundary due
Dirichlet boundary conditions. Instead, they are localiz
near some orbit with finiten, with n increasing withz. Thus,
due to the finiteness of the numerical spectrum, whisper
gallery orbits with finiten contribute.

2. Integrable systems

In the present section we discuss periodic orbit contri
tions to the density~5! for integrable systems. In scaled var
ables,

d̃A~z!5A 1

2p (
M.0

AMgMLM
3/2M2

22Az

3cosS zLM1
p

4
2

3p

2
M2D . ~50!

In order to check the prediction~50!, we have calculated
d̃A(z) quantum mechanically for the observableA5r2. For
this observable,AM5@112cos2(pM1 /M2)#/3 is z indepen-
dent. In order to eliminate thez dependence in the ampli
tudes in Eq.~50!, it is convenient to considerz21/2 d̃A(z). As
before, the Weyl part has to be subtracted. We have fi
z21/2^dA(z)& and subtracted the mean part numerically. T
Fourier spectrum ofz21/2 d̃A(z) is shown in Fig. 6. We ob-
serve good agreement between the quantum-mechanica
the semiclassical spectrum for lengths sufficiently far aw
from integer multiples of the circumference. A uniform a
proximation designed to improve the semiclassical len
spectrum in the vicinity of the circumference was discuss
in @42#.

g

FIG. 6. Fourier transformation ofz21/2d̃A(z) for A5r2 in the
integrable case.~a! shows the semiclassical theory as calcula
from Eq.~50!. The peaks are labeled by the vectorM characterizing
the topologies of the corresponding tori.~b! shows the correspond
ing quantum-mechanical amplitudes.
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C. Distributions

In the preceding two subsections we have discussed
semiclassical evaluation of a sum rule for diagonal ma
elements. Expectation values in chaotic quantum systems
constrained by this sum rule and on energy scales larger
the mean level spacing this leads to deviations from rand
matrix statistics@5#. Semiclassically, these deviations are d
to short periodic orbits.

In addition, there are other ways in which expectati
values may be affected by classical short-time dynam
Even in classically chaotic systems, for instance, substa
deviations from Gaussian fluctuations can occur as poin
out in the introduction. Fig. 7~a! shows diagonal matrix ele
ments ofA5r2 for the circular quantum billiard as a functio
of their energieszmn . We observe that the matrix elemen
fall on lines of constant radial quantum numberm, as ex-
pected for the observabler2 in an integrable system. Thi
behavior is quite different from the chaotic case@see Fig.
7~b!#, where the matrix elements scatter irregularly arou
the microcanonical phase space average^A&mc ~in agreement
with Shnirelman’s theorem!. This difference between the in
tegrable and the chaotic case reflects the different natur
the wave functions in the two cases. While the chaotic w
functions are expected to be more or less equally weighte
configuration space,*Ddruca(r)u2;vol(D), the regular
wave functions associated with a particular torus are stron
localized radially between the radius of the correspond
caustic

We emphasize that also in the ergodic case@Fig. 7 ~bot-
tom!# we observe strings of diagonal matrix elements~with
Aaa*1!. These are marked by arrows and are associa
with matrix elements between eigenstates localized in
vicinity of whispering gallery orbits. The observabler2 was
chosen because it couples strongly to whispering gallery
tion.

Also shown in Fig. 7 are histograms of the diagonal m
trix elements ofA5r2 for the integrable (a50) and the
chaotic case (a51/2). In both cases, the shapes of the d

FIG. 7. Diagonal matrix elements ofr2. Top: Matrix elements as
a function of the corresponding scaled energiesza for the integrable
case (a50). Bottom: the same, but for the chaotic case (a51/2).
Also shown are the corresponding distributions.
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tributions are strongly non-Gaussian and reflect the org
zation of classical phase space. Fora50, the distribution is
determined by the distribution of tori on the energy shell. F
a51/2, the non-Gaussian shoulder is caused by states lo
ized in the vicinity of the whispering gallery motion, t
which the observabler2 is particularly sensitive.

V. RESULTS FOR NONDIAGONAL MATRIX ELEMENTS

A. Classically chaotic case

1. Scaling behavior

As before we make use of the fact that the billiard syst
introduced in Sec. II is a scaling system, in the sense
cussed in Appendix A. We introduce a scaled version of
density~6!,

C~z,Dz!5(
ab

u^cauÂucb&u2 dh~z2za!de~Dz2za1zb!

~51!

~Appendix A!, whereDz5\v/2z is a scaled frequency,za

5AEa and dh(z)5h/@p(x21h2)#. The density~51! has a
particularly transparent semiclassical expansion,

C~z,Dz!5^C~z,Dz!&

1
1

p
Re(

p,r
Cp~Dz! Lp wpr

3exp@r ~ izLp2 ipmp/22hLp!# . ~52!

The Cp(Dz) are analogous to the quantitiesCp(E,\v) de-
fined in Eq.~26!,

Cp~Dz!5
1

2pE2`

`

dL Cp~L ! exp~ iDzL2euLu!, ~53!

andCp(L) is a scaled autocorrelation function~Appendix A!
around the periodic orbitp. Since we are working with
scaled variables, the functionsCp(Dz) are independent ofz.
Since the same applies to the monodromy matrix, the se
classical amplitudes in Eq.~52! are energy independent. Th
smooth contribution also simplifies considerably in sca
variables. It can be written as

^C~z,Dz!&5^d~z!&
1

2pE2`

`

dL Ccl~L ! exp~ iDzL2euLu! .

~54!

whereCcl(L) is a ergodic correlation function in scaled var
ables. This implies that thez and theDz dependence of
C(z,Dz) factorizes in scaled variables,

^C~z,Dz!&;z4g^d~z!& f ~Dz! , ~55!

wheref (Dz) is az-independent scaling function andg is the
exponent describing the scaling of the observableÂ, namely,
A(p,r)5Eg A0(p0 ,r0) as discussed in Appendix A. Figure
shows C(z,Dz) for Â5 x̂ for different values ofz. For
Â5 x̂, one hasg50 and hence the curves in Fig. 8 fall on
one single curve if rescaled witĥd(z)&21 ~inset!. The
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z-independent curves agree well with their semiclassical
proximations given by the Fourier transform of the ergo
autocorrelation functionCcl(L) as predicted by Eq.~54!.

The factorization of Eq.~54! into az-dependent part given
by ^d(z)& and aDz-dependent part allows us to integra
overz, weighted witĥ d(z)&21 in order to obtain an energy
independent expression, i.e.,

~zmax2zmin!
21E

zmin

zmax
dz C~z,Dz!^d~z!&21 .

This is shown in Fig. 9 forÂ5 p̂x /z. In this case,g51/2 and
dividing px by z serves to remove the factor ofz4g in Eq.
~55!.

Apart from modulations at small values ofDz, C(z,Dz)
decays asDz increases. This decay is slow,C(z,Dz)
;Dz2n andn.0. For Â5 p̂x /z, we haveC(z,Dz);Dz22,
and forÂ5x we haven54. This decay is of course typica
for billiards, where the dynamics is discontinuous at t
boundary. The classical correlation function of a smooth
servableA(ps ,rs) for motion in a billiard has discontinuou
derivatives due to the change of direction when the part
collides with the boundary. IfA(ps ,rs) has discontinuities in

FIG. 8. Scaling ofC(z,Dz) for A5x with ^d(z)&. Shown is the
original spectral function with z centered around z
570,80,90,100,110,120~above! and a rescaled according t
C(z,Dz) ^d(z)&21 ~below!.

FIG. 9. Comparison between thez-integrated function (zmax

2z min)
21*dz d(z)21 C(z,Dz) for A5px /z and the semiclassica

approximation~54!. The resonances are marked according to th
nature,h marks the resonances due to motion in the vicinity of
horizontal orbit 2,w` marks the resonance due to motion in t
vicinity of the whispering gallery orbits. The inset shows the sam
but for larger values ofDz.
p-

e
-

le

its nth derivative, the Fourier transform of its correlatio
function decays asDz22(n11) for largeDz. We note that for
A5x we haven51 and forA5px /z we haven50, which
explains the observed decay.

2. Classical localization

In the present section we discuss the origin and interp
tation of the fluctuations observed in Figs. 8 and 9. T
quantum densities in Figs. 8 and 9 exhibit strong modu
tions as a function ofDz, superposed onto a smooth deca
Classically, these modulations may be understood as a
sequence of nonuniformity of phase space. Generically,
rate of divergence varies locally over phase space w
minima near the shortest periodic orbits. The ergodic traj
tory, which explores the whole energy shell for infinite tim
may be trapped in the neighborhood of stable or wea
unstable orbits for some finite time. The correlation functi
Cp(L) along a periodic orbit is periodic withLp . Due to
short-time periodic motion the ergodic correlation functi
also shows quasiperiodic behavior, at least for smallL. As a
result the Fourier transform has peaks at integer multiple
Dz52p/Lp .

Let us describe this in more detail for the caseA5px /z
~see Fig. 9!, where the correlation functions along period
orbits may be evaluated analytically. The second peak in
9 is caused by quasiperiodic motion in the vicinity of th
unstable horizontal orbit 2~with Lp/2p50.6366) and the
stable orbit 42 ~with Lp/2p50.6406) bifurcated from it. De-
noting the angle between the trajectory and thex-axis byc
(c50 for the horizontal orbit!, the autocorrelation functions
of A5px /z along 2 and 42 read Cp(L)
5@124L/Lp# cos2c for 0<L<Lp/2 and Cp(L1Lp/2)
52Cp(L). Their Fourier transforms shows maxima at o
repetitions of 2p/Lp . Since the lengths of both orbits ar
almost degenerate ata51/2 ~the orbit 42 also contributes
with half its length if in a single parity subspace!, their con-
tributions to the Fourier transform ofCcl are indistinguish-
able. The main peak is located nearDz51.55 as can be see
from the figure. The first large peak may be attributed to
infinite family of whispering gallery orbitsn, which appear
when rational tori with winding number 1/n are destroyed.
At a51/2, their lengths converge to the circumference of
billiard as;(12c/n2) with c.0. Their Lyapunov exponen
increases logarithmically withn, the number of hits on the
boundary. This is shown in Fig. 10 where the Lyapun
exponents of the whispering gallery orbits are plotted a
function of the numbern of hits on the boundary. The mai
contribution to the ergodic correlation function thus com
from the shorter, less unstable orbits of the family. Inde
the maximum inC(z,Dz) is found nearDz51.06 corre-
sponding to a mean lengthL/2p50.94 orn'4.

A more compelling proof of the origin of the resonan
structure in the Fourier transform of classical correlati
functions has been given in@43#. The main idea is to decom
pose the phase space into cells of equal size and to calc
the contribution of each cell to the spectrum of the ergo
correlation function at the given~peak! frequency separately
Following @43#, we may write

ir

,
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E
2Lc

Lc
dLCcl~L !exp~ iDzL!

'
1

Ncell
(
cells

^A~0!& cell

3E
2Lc

Lc
dL^A~L !&cell exp~ iDzL!, ~56!

where^ &cell denotes an average over initial conditions with
a phase-space cell. If we followed the individual trajector
for long enough (Lc→`), every phase-space cell would co
tribute equally to the Fourier transform at any frequency.
order to obtain information about subregions in phase sp
one has to chooseLc sufficiently small and study the shor
time correlations of the cells. In practice, we chooseLc about
ten times the length of the shortest periodic orbits, i.e.,Lc
520. We restrict ourselves to the surface of section and
the modulus of the cell amplitudes at fixed scaled freque
Dz. The surface of section is parametrized as follows.
choose the polar anglef to parametrize thex axis. They
coordinate is given by sinx wherex is the angle of incidence
at the boundary@44#. The result is shown in Fig. 11 forDz
51.5 ~left! andDz51.0 ~right!. At Dz51.5 we find highest
intensity around the fixed points of the stable orbit 42. Re-
gions of high intensity extend to the fixed points of the u
stable horizontal orbit 2. They are delineated by the ma
folds of the shortest unstable periodic orbits~compare Fig.
11!.

At Dz51.0, the picture changes completely. We now fi
high density around the fixed points of the whispering g
lery orbits, with highest intensity aroundn54 and 5 in ac-
cordance with the location of the maximum in Figs. 8 and
near Dz51.06 ~see above!. Qualitatively, we observe tha
the high-intensity regions tend to follow the line of fixe
points and their invariant manifolds~compare Fig. 11!.

The above discussion shows that short-time quasiperi
motion which leads to localization of the classical flow
subregions of phase space, is responsible for the reson
structure in the Fourier transform of the classical ergo
autocorrelation function.

FIG. 10. Lyapunov exponentsln for the whispering gallery or-
bits for a51/2 as a function of the numbern of hits at the bound-
ary. There are two kinds of whispering gallery orbits, inverse
perbolic ones (n in table I! and hyperbolic ones (n1 in Table I!. The
dashed lines are fits toln5a1b ln n.
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3. Quantum localization

In the preceding section we have analyzed the resona
in the classical autocorrelation function. Equation~54! al-
lows us to discuss the analogous phenomenon in quan
mechanics.

A corresponding phenomenon of quantum localizat
has indeed been identified in the form of scars, i.e., hig
than average probability distribution of wave functions alo
isolated unstable periodic orbits. A wave packet started al
an unstable periodic orbit would travel around it for som
finite time before spreading all over phase space, the so
the more unstable the underlying orbit. It is possible to qu
tize the motion parallel to the orbit@45# approximately. It
shows in particular that subsequent scars of the same
with lengthLp are separated byDz'2p/Lp . If their overlap
matrix elements is higher than average, the correspond
C(z,Dz) should have a pronounced peak at this value ofDz.
We have found strongly scarred wave functions ata51/2,
which are localized around the triangular orbit 3 and t
orbit 42 bifurcated from it and in the vicinity of the family o
whispering gallery orbits, see Fig. 12. Although the orbit2

is stable, the localized wave function may well be term
scars, since the stable region around the orbit is much
small to quantize individual states, at least for the energ
considered here.

We have analyzed nondiagonal matrix elements of
observableA5r 2 between scarred states and between irre
lar states. In keeping with the above analysis we have fo
that nondiagonal matrix elements between scarred whis
ing gallery states are considerably larger than those betw
irregular states or between a scarred and an irregular s
This shows that inhomogeneities in classical phase sp
lead to interesting features in the quantum-mechanical d
sity ~6!, as exemplified in Figs. 8, 9, and 11. We emphas

-

FIG. 11. Classical contribution of phase space cells to the F
rier transform of the ergodic correlation functionCcl(L) at Dz
51.5 ~left! andDz51.0 ~right! according to Eq.~56!. Also shown
are invariant manifolds of the shortest periodic orbits~left! and
fixed points of the whispering gallery orbits~right!.
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that other quantities, such as the distribution of near
neighbor level spacings in Fig. 1 show no or little sign
inhomogeneities in classical phase space. The quantity
fined in Eq.~6! is therefore particularly suited to analyze th

FIG. 12. Some examples of wave functions scarred by s
periodic orbits,~a! triangular orbit 3~compare Fig. 2!, ~b! stable
orbit 42, ~c!, ~d!, ~e! and~f! whispering gallery orbitsn. In the cases
~c!, . . . ,~f!, note that subsequent scars are separated by.2p/Lp ,
whereLp denotes the length of the scarring orbit.
t-
f
e-

effect of classical phase-space localization in quantum
chanics.

4. Periodic orbits

According to Eq.~52!, the contribution of a particular
periodic orbit to C̃(z,Dz) is weighted by the correlation
function of A(p,r) along the orbit. In the following we dis-
cuss contributions of individual periodic orbits and compa
the semiclassical predictions with exact quantum results.
this end, we Fourier transform the fluctuating part of Eq.~52!
with respect toz and Dz. The variable conjugate toDz is
taken to beL, and the variable conjugate toz is DL, follow-
ing the convention introduced in@16#. According to Eq.~52!,
the functionC̃(DL,L) exhibits peaks as a function ofDL at
the lengths of the periodic orbitsLp . The amplitudes depend
parametrically on the lengthL, which is conjugate to the
scaled frequencyDz. The dependence onL is given by the
periodic orbit correlation functionCp(L). In order to com-
pare the semiclassical formulas with the results of numer
quantum calculations, we proceed as follows. For fixedL we
determine the amplitude of the quantum Fourier transform
DL5Lp . For each orbit, the results for differentL values are
collected together and compared with the semiclassical
plitudes modulated by the periodic orbit correlation fun
tions. The results, forÂ5 x̂, are shown in Fig. 13. In all
cases, the quantum as well as the semiclassical amplit
are shown. We find excellent agreement between the qu
tum and the semiclassical amplitudes.

B. Classically integrable systems

In the preceding section, we discussed classical
periodic-orbit contributions to the density~6! for classically
chaotic systems. In the present section we analyze integr
systems. In scaled variables one has

C~z,Dz!5^C~z,Dz!&

1A 1

2p
Re(

MÞ0
gMCM~Dz!LM

3/2M2
22Az

3expF izLM1 i
p

4
2 i

3p

2
M22hLMG . ~57!

rt

FIG. 13. Real part of the Fourier transform ofC̃(z,L) with
respect toz for A5x (d) in comparison with its semiclassica
approximation~solid lines!.
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CM(Dz) denotes the Fourier transform of the autocorrelat
function of the observableA on the rational torusM,

CM~Dz!5
1

2pE2`

`

dL CM~L ! exp~ iDzL2euLu!, ~58!

CM~L !5E du

~2p!2
A~ IM ,u!A~ IM ,u1vL/2z!. ~59!

In the following we discuss classical and periodic-orbit co
tributions separately.

1. Weyl contributions: asymptotic analysis

In this section we calculate the Weyl contribution
C(z,Dz) for integrable systems analytically. This is possib
as an asymptotic expansion for largeL, whereL is the vari-
able conjugate toDz. We will show that in general
^C(z,L)&.^d(z)& L2(d21)/2. In scaled variables, as a func
tion of L, the Weyl part is given by

^C~z,L !&5
1

~2p!2E du dI B~ I ,u!

3B~ I ,u1vL/2z!d@z2AH~ I !# . ~60!

In order to evaluate this integral, we introduce new Cartes
coordinatesI→j5(j1 ,j2) such thatj2 is always tangentia
to the curve H(I )5z2. Performing the integral overj1
yields a line integral along the curveH(I )5z2. We para-
metrize this curve by I 25gz(I 1). Using u]H/]I 2u
5v252pz/A12r min

2 and I 15r minz we obtain

^C~z,L !&5^d~z!&
4

pE0

1

drminA12r min
2

3E d2u

~2p!2
B~ I ,u!B~ I ,u1vL/2z! . ~61!

The symmetrypf→2pf is taken into account by an add
tional factor of 2. Sincev;2z, Eq. ~61! explicitly exhibits
the scaling property of̂C(z,Dz)& discussed above, namel
that thez andL dependences factorize.

Equation ~61! can be evaluated further most easily f
operators with rotational symmetry. Consider for instan
A5r2. In this case we have

E du

~2p!2
B~ I ,u!B~ I ,u1vL/2z!

5 1
6 @12L2~L22A12r min

2 !2#1 2
15 ~ 1

2 12r min
2 !2.

~62!

A numerical evaluation of this integral, using Eq.~62!, is
shown in Fig. 14~a! together with the correspondin
quantum-mechanical data. We observe good agreemen
tween the quantum-mechanical data and the correspon
semiclassical approximation. Figure 14~b! shows the same
data, but for the chaotic case. Here, the ergodic autocorr
tion function is evaluated numerically as a time average o
n

-

n

e

be-
ng

la-
r

a very long trajectory. Both autocorrelation functions exhi
characteristic oscillations with frequencyDz;p. In com-
parison with its chaotic counterpart, the integrable autoc
relation function exhibits a highly regular structure. In bo
cases, the envelope decays to a constant asL→`. There are,
however, important differences. These will be discussed
the following.

In the integrable case, the envelope of the autocorrela
function decays according to;1/AL. Using Eqs.~41! and
~42!, we rewrite Eq.~61! as

^C~z,L !&5^d~z!&
4

p(
n
E

0

1

drminA12r min
2 uAnu2

3exp~ i n.vL/2z! . ~63!

Here An are the Fourier coefficients of the observab
A(I ,u). In the present case, they are functions ofr min , as are
the frequenciesv. For a rotationally invariant observable
such asA5r 2, the Fourier series is one dimensional. ForA
5r 2 we have

An~r min!55
1

3
~112r min

2 !, for n50,

2

p2

12r min
2

n2
, otherwise.

~64!

These expressions enable us to evaluate Eq.~63!. For the
n50 term in Eq.~63! we obtain 5/18. The remaining term
are evaluated within a stationary phase approximation@46#.
Dropping terms withunu>2 we obtain

Ccl~L !;
5

18
1A2

16

p5

1

AL
cosS pL1

p

4 D . ~65!

This result is shown in Fig. 15 together with the numeric
evaluation of Eq.~61!. Equation~65! proves, moreover, tha
the classical correlation function decays according to;1/AL
for largeL. This very slow decay is in fact generic for two
dimensional integrable systems. Ind dimensions one obtain
;L2(d21)/2. This decay is universally valid for integrabl

FIG. 14. Classical autocorrelation function~solid line! for A
5r2, and the result of a quantum-mechanical calculation (d).
Shown are two cases,~a! the integrable case and~b! the chaotic
case (a51/2) for comparison.
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systems provided the points of stationary phase are isol
and sufficiently far away from the boundary.

We conclude by briefly discussing thet→` limit of au-
tocorrelations in integrable systems in comparison with
chaotic case. It is clear from Eq.~63! that in integrable sys-
tems ^A(t) A(0)&→*dI d@E2H(I )# A0(I )2, where A0(I )
denotes the average of the observableA(I ,u ) over the torus
with actions I . In chaotic systems, on the other han
^A(t) A(0)&→^A&2 for large t. Assuming that the phas
space averagêA& vanishes, autocorrelations in chaotic sy
tems decorrelate for large times. In general this is not tru
integrable systems, where autocorrelations decay to a v
ance of torus averages.

2. Weyl contributions: general case

In the preceding section, the Weyl contribution toC(z,L)
was analyzed. We observed oscillatory behavior as a fu
tion of L, with an envelope decaying according
;L2(d21)/2 in d dimensions. This behavior is shown in Fi
15. An analytical estimate for the envelope of^C(z,L)& was
given for largeL. In the present section we focus on th
oscillations in^C(z,Dz)& as shown in Figs. 14 and 15. Th
oscillatory structure is most conveniently analyzed by F
rier transformation with respect toDz.

We first consider the rotationally invariant case, usingA
5r 2. Using Eq.~42! we have in scaled variables

^C~z,Dz!&5^d~z!&F d~Dz!
4

p

3E
0

1

drminA12r min
2 1

9 ~112r min
2 !2

1 (
n2Þ0

4

pE0

1

drminA12r min
2 S 2

p

12r min
2

n2
2 D 2

3d„Fn2
~Dz,r min!…G ~66!

with Fn2
(Dz,r min)5Dz2n2p/A12r min

2 . Individual terms in

the sum overn2 will contribute wheneverFn2
(Dz,r min)50.

The contribution at these points is weighted by the inverse
u]Fn2

/]r minu. Whenever ]Fn2
/]r min50, the function

^C(z,Dz)& will hence exhibit a resonance. Figure 16~bot-

FIG. 15. Classical autocorrelation function~solid line! for
A5r 2, and the estimate~65! ~dashed line!.
ed

e

,

-
in
ri-

c-

-

f

tom! shows the solutions ofFn2
(Dz,r min)50 for n251, 2,

and 3. The corresponding resonance structure,

^C~z,Dz!&5^d~z!&Fd~Dz!
5

18

1
16

p5 (
n251

@Dz/p#
1

n2
5

~n2p/Dz!12

A12~n2p/Dz!2
, ~67!

is shown in Fig. 16 ~top!. Also shown are quantum
mechanical data for̂C(z,Dz)& together with a smoothed
version of Eq.~67!. In all cases, the diagonal contributio
giving rise to the singular part of Eq.~67! has been sub-
tracted. We observe excellent agreement.

In the remainder of this section we discuss dipolar ope
tors, such asA5x. Generalization to more general operato
such as, for instance,A5x f(uru) for a smooth but otherwise
arbitrary functionf is straightforward. ForA5x one obtains
in scaled variables

^C~z,Dz!&5^d~z!& (
n1561

(
n2Þ0

4

p

3E
0

1

drminA12r min
2 uxn~r min!u2 d@Fn~Dz,r min!# ,

~68!

with Fn(Dz,r min)5Dz1n1„arccos(r min)1n2p…/A12r min
2 .

Figure 17~a! shows^C(z,Dz)& as a function ofDz as calcu-
lated from Eq.~68!. In order to allow for comparison with
quantum-mechanical calculations, a finite broadeninge was
introduced in Eq.~68!. Also shown are results of a quantu

FIG. 16. ~bottom! Solutions ofFn2
(Dz,r min)50. Dz is plotted

as a function ofr min for n251, 2 and 3. The dashed lines show th
position of the resonances.~top! Quantum-mechanical data (d) for
^d(z)&21 ^C(z,Dz)& for the operatorA5r 2, together with the
semiclassical estimate~solid line!, a smoothed version of Eq.~67!.
Also shown is the unsmoothed resonance spectrum~shaded! ac-
cording to Eq.~67!.
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mechanical calculation, for the same values ofe ~Gaussian
smoothing!. The quantum and classical results agree v
well with each other. Figure 17~b! shows the correspondin
data for the chaotic case. We observe that the resonanc
Fig. 17~a! are sharper as compared with those in Fig. 17~b!.
This is a consequence of the symmetries of the integra
system enforcing selection rules.

3. Periodic orbits

In the present section we turn to the oscillatory contrib
tions toC(z,Dz). According to Eq.~57!, the oscillatory con-
tributions are given as a sum over rational toriM. The semi-
classical amplitudes are weighted with torus averages
autocorrelations~40! or ~59!.

We evaluate Eq.~59! for two cases: for rotationally in-
variant and for dipolar operators. To begin with, consider
observableA5r 2 which is rotationally invariant. In scaled
variables we have CM(L)5 1

6 @12L2(L22sin(pnM)2#
1 1

15 @114cos2(pM1 /M2)#
2. Due to the high symmetry of the

integrable problem,CM(L) is periodic inLM /M2. Given the
analytical expression forCM(L) we are in a position to as
sess the periodic-orbit contents of Eq.~57!. Since the first
term in Eq.~57! is only the leading-order approximation t
the mean density, we extract^C(z,Dz)& numerically and
subtract it. In order to extract the length spectrum
C(z,Dz) we compute the double Fourier transformation
z21/2C(z,Dz) with respect toz and Dz. The conjugate
lengths areDL and L, respectively, as in Sec. V A. Th
amplitudes are modulated by the autocorrelation functi
CM(L) as shown in Fig. 18. The overall agreement betwe
the quantum-mechanical amplitudes and the analytical e
mate~57! is satisfactory. We note that for tori withM151
and largeM2 ~whispering gallery tori!, the autocorrelation
functions tend toCM(L);1, the average ofA5r 2 along the
unit circle.

FIG. 17. ~a! Quantum-mechanical data for^d(z)&21 ^C(z,Dz)&
for the operatorA5x, together with the results from Eq.~68!. ~b!
the same, but for the chaotic case (a51/2).
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Figure 19 shows the quantum-mechanical and semicla
cal amplitudes for two cases. First, the top curve in Fig.
shows the amplitudes for the torusM5(2,5) for the inte-
grable case. Second, the two lower curves show the am
tudes for two star-shaped orbits in the nonintegrable c
(a51/2). As the value ofa is increased from zero, the ratio
nal torusM5(2,5) breaks up into isolated periodic orbits. A
a51/2, we find that the two star-shaped orbits are both
stable. We observe that the integrable case exhibits h
symmetry~periodicity with LM /M2). In the case of broken
symmetry (a51/2), the distance between subsequent hits
the boundary is no longer constant~or, equivalently, the in-
tegrals of motionI are destroyed! and the period of the au
tocorrelation functions is given by the full lengthLp of the
respective orbit.

We conclude this section by briefly discussing the dip
operatorA5x. In this case, the autocorrelation function~40!
modulating the semiclassical amplitudes cannot be ca
lated analytically. We will therefore start from Eq.~43!. The
coefficientsAn(IM) can be calculated numerically, as well a
the summation overn. The results are shown in Fig. 20, fo
several different toriM, as a function of scaled frequenc
Dz. We also show the results of an exact quantum calcu
tion. The quantum amplitudes are extracted from the qu
tum data by Fourier transform with respect toz, as described
above. We observe excellent agreement between the q
tum calculations and the semiclassical theory.

FIG. 18. Periodic orbit contributions toC(z,Dz) for A5r2. ~a!
shows the semiclassical amplitude for the torusM5(2,5) calculated
analytically from Eqs.~57! ~solid line! and extracted fromC(z,Dz)
~solid dots!. ~b! shows the same, but forM5(1,3), ~c! for M
5(1,2), and~d! for M5(2,7).

FIG. 19. Comparison of semiclassical amplitudes for the in
grable and the chaotic case. The uppermost curve shows the s
classical amplitude for the integrable system (a50) corresponding
to the torusM5(2,5). The two lower curves show semiclassic
amplitudes for the chaotic case (a51/2) corresponding to the two
orbits shown in the figure. Compare Figs. 2.
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VI. RESPONSE FUNCTIONS

In the two previous sections we described the semicla
cal analysis of Eq.~6! according to the theory laid out in Se
III. We have shown that the structures inC(E,\v) closely
reflect the way in which classical phase space is organi
We have described the influence of phase space inhom
neities in chaotic, ergodic systems and have discussed r
lar systems, where phase space is organized as a foliatio
tori.

In this section we wish to point out that the functio
C(E,\v) is also of considerable interest experimenta
since it governs the response of the quantum system in q
tion to external perturbations. This is immediately obvio
since the response of a quantum system is given by the
sition amplitudes according to Fermi’s golden rule. To
more precise, we note that the response of a quantum sy
to an external, time-dependent perturbation is given by

x~m,v!5
1

i\E0

`

dt ^@Ât ,A#2& exp~ ivt ! ~69!

where Ât5exp(2iĤt/\)Âexp(iĤt/\) and Â does not com-
mute with the HamiltonianĤ. In terms of eigenenergiesEa

and eigenstatesca of Ĥ, one has

x~m,v!5(
a,b

f a2 f b

\v2Ea1Eb1 ih
^cauÂucb&^cbuÂuca&,

~70!

where f a5 f (Ea)5@exp(b(Ea2m)11#21 is the Fermi func-
tion, b5(kBT)21 and m is the chemical potential. For th
imaginary part ofx we have

FIG. 20. Shows a comparison between the amplitudesCp(Dz)
extracted from the quantum-mechanical data forA5x ~in the inte-
grable case! compared with their semiclassical approximations;
the tori M5(1,2), M5(1,3), M5(1,4), M5(1,5), andM5(2,5).
The quantum data are shown asd, the semiclassical theory as sol
lines.
i-

d.
e-
u-
of

s-
s
n-

em

x9~m,v!52pE dE @ f ~E!2 f ~E2\v!#(
a,b

^cauÂucb&

3^cbuÂuca& d~\v2Ea1Eb! d~E2Ea!. ~71!

Assuming that both\v andb21 are small compared to en
ergy scales over which the integrand differs significan
from its value at m, we expand f (E2\v). f (E)
2 f 8(E) \v. This gives

x9~m,v!52p\vE dE f8~E!(
a,b

^cauÂucb&

3^cbuÂuca& d~\v2Ea1Eb! d~E2Ea! .

~72!

Making use of the expressions derived in Sec. III, one
tains

x9~m,v!52p\vE dE f8~E!

3E
2`

`

dt eivt ^A~pt ,rt!A~p,r!&. ~73!

Equation ~73! is the desired classical approximation
x9(m,v). We emphasize that in the derivation it has be
assumed that the Fourier transform of^A(pt ,rt)A(p,r)& with
respect tot varies sufficiently slowly on the scale of\v and
b21.

The real partx8(m,v) of the susceptibility can be ob
tained along similar lines. In the following, however, w
give a slightly different derivation that leads to a for
clearly exhibiting the symmetry properties of the classi
approximation tox(m,v). We start from Eq.~69! and ap-
proximate the commutator by the Poisson bracket@ ,#
.2 i\$,%. This is analogous to the approximation~14!. One
obtains

x~m,v!5E
0

`

dteivtE dpdr f 8@H~p,r!#

3$A~pt ,rt!,H~p,r!% A~p,r!,

assuming that the boundary terms vanish. Using the class
equations of motion we obtain

x~m,v!5E
0

`

dt exp~ ivt !

3E dE f8~E!
d

dt
^A~pt ,rt!A~p,r!&. ~74!

We introduce the classical function

I ~m,v!52
1

2pE2`

`

dt eivtE dE f8~E!^A~pt ,rt!A~p,r!&

52E dE f8~E!C~E,v!. ~75!

r
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At low temperatures,T→0, we haveI (m,v)→C(E,v). Us-
ing Eq. ~74! we obtain the following representation for th
susceptibility

x~m,v!52E
2`

`

dv8
v8I ~m,v8!

v2v8
. ~76!

For the real and imaginary parts of the susceptibility we
tain

x8~m,v!5P E
2`

`

dv8
v8I ~m,v8!

v2v8
,

x9~m,v!52pvI ~m,v!. ~77!

The second of Eqs.~77! is just Eq. ~73!. These equations
constitute a classical approximation for the real and ima
nary parts ofx(m,v). Equations~77! are of the same form
as the spectral representation for susceptibilities in quan
mechanics. The quantum spectral function is replaced b
classical spectral functionI (m,v).

For integrable systems, an explicit expression forI (m,v)
can be derived as follows. Using Eqs.~38! and ~41!, we
obtain

I ~m,v!52E dI f 8@H~ I !#

3(
n

An* ~ I !An~ I !d@v2n–v~ I !#. ~78!

Substituting this into Eq.~76!, we obtain

x~m,v!5E dI f 8@H~ I !#

3(
n

An* ~ I !An~ I !
n•v~ I !

v2n•v~ I !1 i01
. ~79!

This provides an easily evaluated classical approximation
susceptibilites in classically integrable quantum systems
terms of the Fourier coefficients of the observableA(I ,u),
which are periodic functions ofu on a given torusI , and in
terms of the corresponding frequenciesn•v.

For chaotic systems, there is no explicit expression av
able for I (m,v) — such as Eq.~78! for integrable systems
In ergodic systems, however, the phase-space average i
~73! can be evaluated as a time average along an erg
trajectory.

Equations~77! show that the resonance structures d
cussed in Secs. V A 2 and V A 3 can, in principle, be fou
experimentally. In Refs.@26,27,46# a possible absorption ex
periment was discussed where these structures would be
evant. We note that our semiclassical treatment allows u
justify and extend the classical model of the static magne
coductivity in antidot arrays discussed in Ref.@25#. We re-
produce the classical model for the magnetoconducti
from Eqs.~6! wherev50 andA5 j x ( j x is the current inx
direction!,

sxx~EF!5v21x9~EF ,v50! . ~80!
-

i-

m
a

r
in

il-

Eq.
ic

-

el-
to
-

y

The antidot arrays studied experimentally@48# exhibit mixed
classical dynamics, where stable islands coexist with c
nected chaotic regions in phase space. Our theory can
extended to this case in the following way. We group o
states into those associated with stable islands~regular states!
and irregular states associated with the chaotic phase-s
regions@49,50#. We neglect nondiagonal matrix elements b
tween regular and irregular states~assuming that they are
exponentially suppressed!. Then Eq. ~6! consists of two
terms,

C~E,\v!.Creg~E,\v!1Cirreg~E,\v! . ~81!

Cirreg(E,\v) can be analyzed according to the semiclass
formulas set out in Sec. III A, andCreg(E,\v) can be calcu-
lated according to the formulas given in Sec. III B by defi
ing action and angle variables local to a given stable isla
A first step in this direction has been discussed in@28#. We
note that stable islands contribute in two ways toC(E,\v).
First, there is the obvious contribution throughCreg(E,\v).
Second, a stable island is surrounded by comparatively st
regions within the connected chaotic component. These c
paratively stable regions cause resonances inCirreg(E,\v),
of the nature discussed in Secs. V A 2 and V A 3.

It is clear from the discussion in Sec. III that there may
semiclassical corrections to the classical magnetocondu
ity calculated in Ref.@25#. These would be of oscillatory
nature and of the forms~38! or ~59!, for integrable and cha-
otic systems, respectively. Such oscillatory contributio
have in fact been observed@30# and have been discussed
Refs.@31,32#. A comparison of such contributions with exa
quantum-mechanical calculations was first performed in@24#
and @23#.

VII. SUMMARY AND CONCLUSIONS

In this article, we have reported on semiclassical s
rules constraining local densities of matrix elements
single-particle quantum systems. It was to be expected
has been worked out in detail that the semiclassical estim
depend on the nature of the dynamics of the classical sys
We have studied systems exhibiting chaotic, largely ergo
dynamics and systems with regular classical dynamics.

In both cases, there are two contributions to the sum ru
a smooth and an oscillatory part. The smooth contribution
given as the Fourier transform of a classical correlation fu
tion. This is of course true in both cases, for ergodic and
regular systems. In ergodic systems, this correlation func
may be evaluated along an ergodic trajectory. Despite be
ergodic, however, the energy shell may be far from homo
neous. The ergodic trajectory may be trapped in the vicin
of weakly unstable regions. We have shown how this int
mittent behavior gives rise to pronounced resonances in
smooth part of the quantum density. Quantum mechanica
these resonances are due to wave function localization in
vicinity of weakly unstable regions in phase space. Clas
cally, these structures are just resonances in the autocor
tion function. We have discussed this analogy and analy
it quantitatively.

In regular systems, the smooth contribution is also giv
as a phase-space average of autocorrelations. In this
however, the invariant objects in phase space are tori and
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average over autocorrelations on tori in order to obtain
smooth contribution to the quantum density of nondiago
matrix elements. There are three important differences fr
the ergodic case. First, the resonances are sharper in
grable systems. This is a consequence of selection rules
to the high symmetry of integrable systems. Second, mo
along invariant tori is always~quasi!periodic and thus de
correlates very slowly. As a function oft — the variable
conjugate to the energy separation\v5Ea2Eb between
initial and final states — the smooth contribution decays
;t2(d21)/2 for large t. This was shown within a stationar
phase analysis and is valid provided the points of station
phase are isolated and sufficiently far away from the bou
ary. Third, in ergodic systemŝC(E,t)& has the following
limiting behavior for large times:̂C(E,t)&;^d(E)& ^A&2. In
integrable systems, on the other hand, one finds^C(E,t)&
;^d(E)& *dI d@E2H(I )# A0(I )2, whereA0(I ) denotes the
average of the observableA(I ,u) over the torus with actions
I .

In addition to the smooth part, semiclassical theory p
dicts periodic orbit contributions to the quantum densiti
We have analyzed the periodic orbit contributions in det
for integrable as well as for chaotic systems. Again, the si
larity between the integrable and the chaotic is apparent:
ploiting the scaling property of the system, the contributi
of each orbit may be obtained by Fourier transformation
the oscillating part of the spectral function with respect to
scaled energy variable. In the chaotic case, we find the
plitudes to be modulated by correlation functions along
respective isolated periodic orbits. In the integrable ca
these amplitudes are averaged over all periodic orbits o
given torus.

In summary, we have provided a comprehensive and c
clusive study of all aspects of the semiclassical evaluatio
local densities of quantum-mechanical matrix elements. T
includes, in particular, the results of two previously pu
lished articles@24,23# and goes considerably beyond wh
could be discussed there.

The results published in this paper are not only of inter
theoretically. As we have pointed out, the density of non
agonal matrix elements characterizes the linear respons
quantum systems to external, time-dependent perturbat
Using the framework provided in this article, it is possible
derive classical and semiclassical approximations
quantum-mechanical response functions. Most recently,
ing the results of this article, we have studied the respons
small metal particles to electromagnetic radiation, for dif
sive @29# and for ballistic dynamics@47#, and taking into
account the magnetic dipole interaction in both diffusive a
ballistic systems@51#.
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APPENDIX: SEMICLASSICAL QUANTIZATION
FOR SCALING SYSTEMS

In this Appendix we summarize, for convenience, seve
well-known facts about scaling systems. In a scaling syst
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the Hamiltonian phase flow may be parameterized such
all quantities characterizing classical motion are energy
dependent. In a billiard withm51/2, for example, solutions
of Hamilton’s equations at energiesE andE051 are related
via the transformation

p~ t !5AEp0~ t0!, r~ t !5r0~ t0!, ~A1!

provided the timet is scaled appropriately,t5E21/2 t0. Other
observables are assumed to scale as

A~p,r!5EgA0~p0 ,r0! ~A2!

which defines the exponentg. The Maupertuis action along
trajectory scales as

S5E pdr5AEE p0dr0[zS0 ~A3!

with z5AE. One notes that the scaled actionS05*p0dq0 is
just the arclengthL along the trajectory, sinceS05]S/]z
5t]E/]z52zt5L. The phase flow inL is generated by
AH(p,r).

There is no direct analogue in quantum mechanics, si
the quantum-mechanical propagator corresponding
AH(p,r) does not satisfy Schro¨dinger’s equation. As is well
known, however, a scaled version of Gutzwiller’s trace fo
mula may be obtained by definingd(z) dz5d(E) dE. Start-
ing from Eq.~49! one has withTp5]Sp /]E andza5Ea

1/2,

dA~z![(
a

^cauÂuca& d~z2za!5^dA~z!&

1
1

p
Re(

p,r
Lp wpr Ap exp@r ~ izLp2 ipmp/2!#.

~A4!

Equation~A4! is a Fourier series inz and the contribution of
each periodic orbit to the density of states may be ea
extracted by Fourier transformation@52#. In order to elimi-
nate all energy dependences of the semiclassical amplitu
the operators should be scaled with energy according to t
classical scaling properties~A2!.

To derive a scaling expression for non-diagonal mat
elements, one makes use of the following scaling relation

FIG. 21. Scaling behavior of the spectral functionC(E,v) for
A5x and h50.2. Shown are various values ofz5AE, namelyz
580 (d), z590 ~j!, z5100, andz5110 .
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autocorrelation functions,C(E,t)5E2g f (2AEt)5E2g f (L).
Applying this to the Weyl part ofC(E,v), one obtains~with
\51)

^C~E,v!&52E1/212g^d~E!& f ~v/2AE!. ~A5!

In Fig. 21, we shoŵ C(E,v)& for A5x as a function ofv
for several values ofE. After scaling thex andy axis appro-
priately, the data fall on the same energy-independent cu
f ( ). A similar scaling relation holds for the periodic-orb
contributions. This scaling property suggests to work fro
the outset with scaled variablesz5AE andDz5v/2AE, i.e.,
to consider

C~z,Dz!5(
ab

u^cauÂucb&u2d~z2za!d~Dz2za1zb!,
cs

.

ev

ac
ve

which has the semiclassical expansion

C~z,Dz!5^C~z,Dz!&

1
1

p
Re(

p,r
Cp~Dz! Lp wpr exp@r ~ izLp2 ipmp/2!#

~A6!

with

^C~z,Dz!&.^d~z!&
1

2pE2`

`

dL exp~ iDzL! Ccl~L !

and Cp(Dz) defined analogously. Unlike Eq.~A4!, the
scaled sum rule~A6! is not exact. It is valid providedz
@Dz.
,
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